THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2058 Honours Mathematical Analysis I 2022-23 Tutorial 9 10th November2022

- Tutorial problems will be posted every Wednesday, provided there is a tutorial class on the Thursday same week. You are advised to try out the problems before attending tutorial classes, where the questions will be discussed.
- Solutions to tutorial problems will be posted after tutorial classes.
- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.
- 1. For each of the following function, if it is continuous on its domain, prove it by $\epsilon \delta$ argument; otherwise find out its set of discontinuity (and prove it).
 - (a) $f(x) := x^2$, where $x \in \mathbb{R}$.
 - (b) $f(x) := \frac{x}{x^2-1}$ for $x \neq \pm 1$, f(x) := 1 for x = 1 and f(x) := -1 for x = -1.
 - (c) For $x \in [0, 1]$, if x is irrational, define f(x) := x, and if x is rational, write it in reduced fraction form x = p/q where gcd(p, q) = 1, and define $f(x) = p \sin(1/q)$. (Hint: you are allowed to use the fact that $\lim_{n\to\infty} n \sin(1/n) = 1$.)
- 2. Suppose that f, g are functions on $A \subset \mathbb{R}$, if f is continuous and g is discontinuous on A, is f + g necessarily discontinuous?
- 3. Give an example of a pair of discontinuous functions f, g on \mathbb{R} so that their composition $g \circ f$ is continuous.
- 4. Let $f : \mathbb{R} \to \mathbb{R}$ be an additive function, i.e. f(x + y) = f(x) + f(y) for any x, y, show that if f is continuous at some point c, then f is continuous on \mathbb{R} .
- 5. Let $g : \mathbb{R} \to \mathbb{R}$ be multiplicative, i.e. g(x+y) = g(x)g(y) for any x, y, show that if g is continuous at 0, then g is continuous on \mathbb{R} .
- 6. In the following exercise, we will prove that the set of discontinuity D_f of a function $f : \mathbb{R} \to \mathbb{R}$ is a countable union of closed subsets (such are called F_{σ} sets).
 - (a) For each $\epsilon > 0$, we say that f is ϵ -continuous at c if there exists $\delta > 0$ so that for all x, y in $(c \delta, c + \delta)$, we have $|f(x) f(y)| < \epsilon$. We denote $D_{\epsilon} = \{c \in \mathbb{R} | f \text{ is not } \epsilon$ -continuous at $c\}$. Prove that D_{ϵ} is a closed subset for any ϵ .
 - (b) Show that for $\epsilon_1 < \epsilon_2$, we have $D_{\epsilon_2} \subset D_{\epsilon_1}$.
 - (c) Prove that for any ε > 0, if f is continuous at c, then f is ε-continuous at c. Hence deduce that D_ε ⊂ D_f.
 - (d) Prove that if f is not continuous at c, then there is some ϵ so that f is not ϵ -continuous. Hence show that $D_f = \bigcup_{n=1}^{\infty} D_{\frac{1}{n}}$.

Remark: Actually, the converse is also true. Given any F_{σ} set, it is the set of discontinuity of some function on \mathbb{R} .